2,315 research outputs found

    Nuclear prolate-shape dominance with the Woods-Saxon potential

    Full text link
    We study the prolate-shape predominance of the nuclear ground-state deformation by calculating the masses of more than two thousand even-even nuclei using the Strutinsky method, modified by Kruppa, and improved by us. The influences of the surface thickness of the single-particle potentials, the strength of the spin-orbit potential, and the pairing correlations are investigated by varying the parameters of the Woods-Saxon potential and the pairing interaction. The strong interference between the effects of the surface thickness and the spin-orbit potential is confirmed to persist for six sets of the Woods-Saxon potential parameters. The observed behavior of the ratios of prolate, oblate, and spherical nuclei versus potential parameters are rather different in different mass regions. It is also found that the ratio of spherical nuclei increases for weakly bound unstable nuclei. Differences of the results from the calculations with the Nilsson potential are described in detail.Comment: 16 pages, 17 figure

    Similarity of nuclear structure in 132Sn and 208Pb regions: proton-neutron multiplets

    Full text link
    Starting from the striking similarity of proton-neutron multiplets in 134Sb and 210Bi, we perform a shell-model study of nuclei with two additional protons or neutrons to find out to what extent this analogy persists. We employ effective interactions derived from the CD-Bonn nucleon-nucleon potential renormalized by use of the V-low-k approach. The calculated results for 136Sb, 212Bi, 136I, and 212At are in very good agreement with the available experimental data. The similarity between 132Sn and 208Pb regions is discussed in connection with the effective interaction, emphasizing the role of core polarization effects.Comment: 4 pages, 3 figures, 2 table

    Sulfatide in health and disease. The evaluation of sulfatide in cerebrospinal fluid as a possible biomarker for neurodegeneration

    Get PDF
    Sulfatide (3-O-sulfogalactosylceramide, SM4) is a glycosphingolipid, highly multifunctional and particularly enriched in the myelin sheath of neurons. The role of sulfatide has been implicated in various biological fields such as the nervous system, immune system, host-pathogen recognition and infection, beta cell function and haemostasis/thrombosis. Thus, alterations in sulfatide metabolism and production are associated with several human diseases such as neurological and immunological disorders and cancers. The unique lipid-rich composition of myelin reflects the importance of lipids in this specific membrane structure. Sulfatide has been shown to be involved in the regulation of oligodendrocyte differentiation and in the maintenance of the myelin sheath by influencing membrane dynamics involving sorting and lateral assembly of myelin proteins as well as ion channels. Sulfatide is furthermore essential for proper formation of the axo-glial junctions at the paranode together with axonal glycosphingolipids. Alterations in sulfatide metabolism are suggested to contribute to myelin deterioration as well as synaptic dysfunction, neurological decline and inflammation observed in different conditions associated with myelin pathology (mouse models and human disorders). Body fluid biomarkers are of importance for clinical diagnostics as well as for patient stratification in clinical trials and treatment monitoring. Cerebrospinal fluid (CSF) is commonly used as an indirect measure of brain metabolism and analysis of CSF sulfatide might provide information regarding whether the lipid disruption observed in neurodegenerative disorders is reflected in this body fluid. In this review, we evaluate the diagnostic utility of CSF sulfatide as a biomarker for neurodegenerative disorders associated with dysmyelination/demyelination by summarising the current literature on this topic. We can conclude that neither CSF sulfatide levels nor individual sulfatide species consistently reflect the lipid disruption observed in many of the demyelinating disorders. One exception is the lysosomal storage disorder metachromatic leukodystrophy, possibly due to the genetically determined accumulation of non-metabolised sulfatide. We also discuss possible explanations as to why myelin pathology in brain tissue is poorly reflected by the CSF sulfatide concentration. The previous suggestion that CSF sulfatide is a marker of myelin damage has thereby been challenged by more recent studies using more sophisticated laboratory techniques for sulfatide analysis as well as improved sample selection criteria due to increased knowledge on disease pathology

    Quasifree pion photoproduction on the deuteron in the Δ\Delta region

    Full text link
    Photo production of pions on the deuteron is studied in the spectator nucleon model. The Born terms of the elementary production amplitude are determined in pseudovector π\piN coupling and supplied with a form factor. The Δ\Delta resonance is considered both in the ss and the uu channel. The parameters of the Δ\Delta resonance and the cutoff of the form factors are fixed on the leading photoproduction multipoles. Results for total and differential cross sections are compared with experimental data. Particular attention is paid to the role of Pauli correlations of the final state nucleons in the quasifree case. The results are compared with those for pion photoproduction on the nucleon.Comment: 17 pages LateX2e including 5 postscript figure

    Particle tracking in kaon electroproduction with cathode-charge sampling in multi-wire proportional chambers

    Full text link
    Wire chambers are routinely operated as tracking detectors in magnetic spectrometers at high-intensity continuous electron beams. Especially in experiments studying reactions with small cross-sections the reaction yield is limited by the background rate in the chambers. One way to determine the track of a charged particle through a multi-wire proportional chamber (MWPC) is the measurement of the charge distribution induced on its cathodes. In practical applications of this read-out method, the algorithm to relate the measured charge distribution to the avalanche position is an important factor for the achievable position resolution and for the track reconstruction efficiency. An algorithm was developed for operating two large-sized MWPCs in a strong background environment with multiple-particle tracks. Resulting efficiencies were determined as a function of the electron beam current and on the signal amplitudes. Because of the different energy-losses of pions, kaons, and protons in the momentum range of the spectrometer the efficiencies depend also on the particle species

    High-precision Studies of the 3^{\bf{3}}He(e,eâ€Č^{\bf{\prime}}p) Reaction at the Quasielastic Peak

    Full text link
    Precision studies of the reaction 3^{3}He(e,eâ€Č^\primep) using the three-spectrometer facility at the Mainz microtron MAMI are presented. All data are for quasielastic kinematics at ∣q⃗∣=685|\vec{q} | =685 MeV/c. Absolute cross sections were measured at three electron kinematics. For the measured missing momenta range from 10 to 165 MeV/c, no strength is observed for missing energies higher than 20 MeV. Distorted momentum distributions were extracted for the two-body breakup and the continuum. The longitudinal and transverse behavior was studied by measuring the cross section for three photon polarizations. The longitudinal and transverse nature of the cross sections is well described by a currently accepted and widely used prescription of the off-shell electron-nucleon cross-section. The results are compared to modern three-body calculations and to previous data.Comment: 4 pages, 3 figures. Submitted for publication in Phys. Rev. Let

    Self energies of the pion and the delta isobar from the ^3He(e,e'pi^+)^3H reaction

    Full text link
    In a kinematically complete experiment at the Mainz microtron MAMI, pion angular distributions of the 3^3He(e,e'π+)3\pi^+)^3H reaction have been measured in the excitation region of the Δ\Delta resonance to determine the longitudinal (LL), transverse (TT), and the LTLT interference part of the differential cross section. The data are described only after introducing self-energy modifications of the pion and Δ\Delta-isobar propagators. Using Chiral Perturbation Theory (ChPT) to extrapolate the pion self energy as inferred from the measurement on the mass shell, we deduce a reduction of the π+\pi^+ mass of Δmπ+=(−1.7−2.1+1.7)\Delta m_{\pi^+} = (-1.7^{+ 1.7}_{- 2.1}) MeV/c2^2 in the neutron-rich nuclear medium at a density of ρ=(0.057−0.057+0.085)\rho = (0.057^{+ 0.085}_{- 0.057}) fm−3^{-3}. Our data are consistent with the Δ\Delta self energy determined from measurements of π0\pi^0 photoproduction from 4^4He and heavier nuclei.Comment: Elsart, 12 pages and 4 figures, Correspondent: Professor Dr. Dr. h.c. mult. Achim Richter, [email protected], submitted to Phys. Rev. Let

    Polarization observables of the gamma d --> PiNN reaction in the Delta(1232)-resonance region

    Full text link
    Polarization observables of the three charge states of the pion for the Îłd→πNN\gamma d\to\pi NN reaction with polarized photon beam and/or oriented deuteron target are evaluated over the whole Δ\Delta(1232)-resonance region adopting a nonrelativistic model based on time-ordered perturbation theory. Results for the π\pi-meson spectra, linear photon asymmetry, vector and tensor target asymmetries are presented. Particular attention is given, for the first time, to double polarization asymmetries for which we present results for T20ℓT_{20}^{\ell} and T2±2ℓT_{2\pm 2}^{\ell}. We found that all other double polarization asymmetries of photon and deuteron target are vanished.Comment: 17 Pages, 8 Figures, accepted for publication in Int. J. Mod. Phys.

    A measurement of the axial form factor of the nucleon by the p(e,e'pi+)n reaction at W=1125 MeV

    Full text link
    The reaction p(e,e'pi+)n was measured at the Mainz Microtron MAMI at an invariant mass of W=1125 MeV and four-momentum transfers of Q^2=0.117, 0.195 and 0.273 (GeV/c)^2. For each value of Q^2, a Rosenbluth separation of the transverse and longitudinal cross sections was performed. An effective Lagrangian model was used to extract the `axial mass' from experimental data. We find a value of M_A=(1.077+-0.039) GeV which is (0.051+-0.044) GeV larger than the axial mass known from neutrino scattering experiments. This is consistent with recent calculations in chiral perturbation theory.Comment: 14 pages, 5 figures, uses elsart.cl

    Generalized seniority scheme in light Sn isotopes

    Get PDF
    The yrast generalized seniority states are compared with the corresponding shell model states for the case of the Sn isotopes 104−112^{104-112}Sn. For most of the cases the energies agree within 100 keV and the overlaps of the wave functions are greater than 0.7.Comment: 8 pages, revtex. Submitted to Phys. Rev.
    • 

    corecore